Человеческий мозг: непознанный биологический компьютер

Содержание

Чем отличается мозг человека от компьютера, что умеют нейронные сети и будущее науки

Человеческий мозг: непознанный биологический компьютер

Алена Лепилина

Ведущий эксперт искусственному интеллекту Педро Домингос написал любопытную книгу о том, как машинное обучение может изменить и уже меняет наш мир.

Нейронные сети опутывают нас все плотнее, алгоритмы управляют нашей жизнью: они находят книги, фильмы, работу и партнеров для нас, управляют инвестициями и разрабатывают  лекарства, самостоятельно обучаясь.

Алгоритмы как маленькие любознательные дети: смотрят на нас, повторяют за нами и экспериментируют.

А самое удивительное, что ученые уже работают над Верховным алгоритмом, который будет способен решать любые задачи еще до того, как мы их сформулируем (не напоминает Дугласа Адамса?), и извлекать знания обо всем на свете из данных. Любопытно, правда?

Как устроен наш мозг и как он учится?

Канадский психолог Дональд Хебб в 1949 году сформулировал правило обучения, которое сейчас лежит в основе множества искусственных нейронных сетей: «нейроны, которые срабатывают вместе, связываются друг с другом».

В правиле Хебба слились идеи психологии, нейробиологии и, что интересно, немалая доля домыслов. Примерно в то же время испанский нейробиолог Сантьяго Рамон-и-Кахаль провел первые подробные исследования мозга, окрашивая нейроны.

Он каталогизировал свои наблюдения, как ботаники классифицируют новые виды деревьев.

источник

Ко времени Хебба нейробиологи в общих чертах понимали, как работают нейроны, однако именно он первым предложил механизм, согласно которому нейроны могут кодировать ассоциации. Каждое понятие представлено множеством нейронов. И эти нейроны, которые возбуждают друг друга, образуют, в терминологии Хебба, «ансамбли клеток».

С помощью таких собраний в головном мозге представлены понятия и воспоминания. В каждый ансамбль могут входить нейроны из разных областей мозга, ансамбли могут пересекаться. Так, клеточный ансамбль для понятия «нога» включает ансамбль для понятия «ступня», в который, в свою очередь, входят ансамбли для изображения ступни и звучания слова «ступня».

Тем не менее для имитации работы мозга одного правила Хебба мало: сначала надо разобраться с устройством головного мозга.

Каждый нейрон напоминает крохотное деревце с огромной корневой системой из дендритов и тонким волнистым стволом — аксоном.

Мозг в целом похож на лес из миллиардов таких деревьев, однако лес этот необычный: ветви деревьев соединены в нем с корнями тысяч других деревьев (такие соединения называются синапсами), образуя колоссальное, невиданное хитросплетение.

Если расположить аксоны мозга друг за другом, они займут расстояние от Земли до Луны.

Эти джунгли потрескивают от электрических разрядов. Искры бегут по стволам и порождают в соседних деревьях еще больший сонм искр. Время от времени лес неистово вспыхивает, потом снова успокаивается. Работа мозга похожа на симфонию таких электрических разрядов.

Если бы можно было посмотреть изнутри на то, что происходит в тот момент, когда вы читаете эту страницу, сцена затмила бы самые оживленные мегаполисы из фантастических романов. Этот невероятно сложный узор нейронных искр в итоге порождает человеческое сознание.

Следующий шаг — превратить работу синапсов в алгоритм.

Нейросети. Начало

Первая формальная модель нейрона была предложена в 1943 году Уорреном Маккаллоком и Уолтером Питтсом. Она была во многом похожа на логические вентили, из которых состоят компьютеры с И, ИЛИ и НЕ. Нейронные сети могут совершать все операции, которые умеет делать компьютер. Поначалу компьютер часто называли электронным мозгом, и это была не просто аналогия.

Однако нейрон Маккаллока–Питтса не умеет учиться. Это стало шагом к изобретению перцептронов. Харизматичный оратор и очень живой человек, психолог Фрэнк Розенблатт сделал для зарождения машинного обучения больше, чем кто бы то ни было. Своим названием перцептроны обязаны его интересу к применению своих моделей в проблемах восприятия (перцепции), например распознавания речи и символов.

А вот это штука уже посовременнее: тактильный интерфейс, меняющий форму, разработанный в Массачусетском технологическом институте, – источник.

Перцептрон похож на крохотный парламент, в котором побеждает большинство (хотя, наверное, не такой уж и крохотный, учитывая, что в нем могут быть тысячи членов). Но при этом парламент не совсем демократический, поскольку в целом не все имеют равное право голоса.

Нейронная сеть в этом отношении больше похожа на , потому что несколько близких друзей стоят тысячи френдов, — именно им вы больше всего доверяете, и они больше всего на вас влияют. Если друг порекомендует вам фильм, вы посмотрите его и вам понравится, в следующий раз вы, вероятно, снова последуете его совету.

С другой стороны, если подруга постоянно восторгается фильмами, которые не доставляют вам никакого удовольствия, вы начнете игнорировать ее мнение (и не исключено, что дружба поостынет).

Перцептрон вызвал восторг в научном сообществе. Он был простым, но при этом умел узнавать печатные буквы и звуки речи: для этого требовалось только обучение на примерах.

Но затем перцептрон уперся в стену. Инженеров знаний раздражали заявления Розенблатта: они завидовали вниманию и финансированию, которое привлекали нейронные сети в целом и перцептроны в частности.

Одним из таких критиков был Марвин Минский, который опубликовал книгу с критикой перцептронов: он описал простые вещи, которым алгоритм не в состоянии научиться.

(Хотя надо сказать, что спустя 20 лет это оказалось не так.)

Мозг и компьютер: принципиальное различие

В случае обратной дедукции мы шаг за шагом разбираемся, какое правило необходимо ввести, чтобы от посылок прийти к желаемым выводам. Однако согласно правилу Хебба, все нейроны учатся одновременно. В этом нашли отражение различия между компьютерами и мозгом.

  • Компьютеры даже совершенно обычные операции — например, сложение двух чисел или переключение выключателя — делают маленькими шажочками, поэтому им нужно много этапов. При этом шаги могут быть очень быстрыми, потому что транзисторы способны включаться и выключаться миллиарды раз в секунду.
  • Мозг же умеет выполнять большое количество вычислений параллельно благодаря одновременной работе миллиардов нейронов. При этом нейроны могут стимулироваться в лучшем случае тысячу раз в секунду, и каждое из этих вычислений медленное.

Количество транзисторов в компьютере приближается к количеству нейронов в головном мозге человека, однако мозг безусловно выигрывает в количестве соединений.

Типичный транзистор в микропроцессоре непосредственно связан лишь с немногими другими, и применяемая технология планарных полупроводников жестко ограничивает потенциал совершенствования работы компьютера. А у нейрона — тысячи синапсов. Если вы идете по улице и увидели знакомую, вам понадобится лишь десятая доля секунды, чтобы ее узнать.

Это не значит, что с помощью компьютера нельзя симулировать работу мозга: в конце концов, именно это делают коннекционистские алгоритмы.

Поскольку компьютер — универсальная машина Тьюринга, он может выполнять вычисления, происходящие в мозге, как и любые другие, при условии, что у него есть достаточно памяти и времени.

В частности, недостаток связности можно компенсировать скоростью: использовать одно и то же соединение тысячу раз, чтобы имитировать тысячу соединений.

На самом деле сегодня главный недостаток компьютеров заключается в том, что в отличие от мозга они потребляют энергию: ваш мозг использует примерно столько мощности, сколько маленькая лампочка, а для некоторых сложных машин нужно столько электричества, что им можно осветить целый бизнес-центр.

Что умеют нейронные сети

Ученые Терри Сейновски и Чарльз Розенберг обучали многослойный перцептрон читать вслух. Их система NETtalk сканировала текст, подбирала фонемы согласно контексту и передавала их в синтезатор речи.

NETtalk не только делал правильные обобщения для новых слов, чего не умели системы, основанные на знаниях, но и научился говорить очень похоже на человека.

Сейновски любил очаровывать публику на научных мероприятиях, пуская запись обучения NETtalk: сначала лепет, затем что-то более внятное и наконец вполне гладкая речь с отдельными ошибками. (Поищите примеры на по запросу sejnowski nettalk.)

Первым большим успехом нейронных сетей стало прогнозирование на фондовой бирже. Поскольку сети умеют выявлять маленькие нелинейности в очень зашумленных данных, они приобрели популярность. Типичный инвестиционный фонд тренирует сети для каждой из многочисленных ценных бумаг, затем позволяет выбрать самые многообещающие, после чего люди-аналитики решают, в какую из них инвестировать.

Беспилотные автомобили — тоже пример того, как хорошо нейронные сети обучаются. А совсем недавно Google рассказали о том, что научили нейросети «писать» картины, опираясь на загруженные в них изображения.

Ребята из Медузы собрали целую галерею таких машинных картин.

Сегодня мы обучаем более глубокие сети, чем когда бы то ни было, и они задают новые стандарты в зрении, распознавании речи, разработке лекарственных средств и других сферах.  И, конечно, меняют мир.

По мере того как мы будем лучше понимать мозг, ситуация может измениться. Вдохновленная проектом «Геном человека», новая дисциплина — коннектомика — стремится составить карту всех мозговых синапсов.

Возможно, это то самое окно в будущее.

P.S.: Подписывайтесь на нашу новую рассылку. Раз в две недели будем присылать 10 самых интересных и полезных материалов из блога МИФа.

По материалам книги «Верховный алгоритм»

Обложка поста: desiringgod.org

Источник: https://blog.mann-ivanov-ferber.ru/2016/07/06/chem-otlichaetsya-mozg-cheloveka-ot-kompyutera-chto-umeyut-nejronnye-seti-i-budushhee-nauki/

Человек — БиоКомпьютер

Человеческий мозг: непознанный биологический компьютер

ЧЕЛОВЕК-БИОКОМПЬЮТЕР

В прошлой статье «Как обыграть МАТРИЦУ», я затронула вопрос работы с подсознанием. Как оно работает и что необходимо сделать, чтобы выйти из этого «заколдованного» круга СОСТОЯНИЕ- РЕАКЦИЯ-ДЕЙСТВИЕ.

Все мы понимаем, что одного осознания какой-то ситуации мало, нужны действия. Но для действия нужны силы, т.е. энергия. И не просто энергия, а энергия определенной направленности, с уже встроенным вектором под названием «ЖЕЛАНИЕ ЖИТЬ ПО-ДРУГОМУ».

Откуда вдруг возникает это желание вырваться из заколдованного круга проблем, ведь раньше нас устраивало все? Что поменялось? Да просто иссякла энергия, выделенная на прохождение этого урока. Что я имею в виду? Попробую объяснить максимально доступно, как это показали мне Наставники.

Человеческий мозг является биологическим компьютером, выполняющим функции, отвечающие за жизнедеятельность самого человеческого тела и его сохранности для выполнения, поставленных перед воплощением в это тело, задач Души. Эти функции работают вне зависимости от нашего с Вами мышления.

Единицы людей добились возможности его контролировать, останавливая дыхание на продолжительное время, или перемещаясь на расстояние, или останавливая сердце, не прекращая жизнедеятельности организма, или замедлять работу всей биологии, или управлять энергией, перенаправляя потоки, например, когда прокалывают грудь шпагой.

Сам по себе головной мозг человека является лишь составной частью более совершенного и мощного компьютера. В него встроен механизм, позволяющий держать постоянную информационную связь с внешним энергетическим полем биологического тела и самим СВЕРХКОМПЬЮТЕРОМ, назовем его так.


Наше сознание, сверхсознание и подсознание находится вне нашей биологии, хотя многие думают что их работа обусловлена функциями мозга мыслить, запоминать. Нет, оно находится в энергетической оболочке физического тела и включается только в состоянии бодрствования тела.

В состоянии гипноза или при воздействии практик холотропного дыхания, НЛП (нейролингвистического программирования) , ….

специалист с помощью своей энергетики и ключевых слов или действий отключает часть функций в мозге человека, отвечающих за анализ происходящих в теле процессов, и переключает человека на считывание информации на прямую из подсознания или кристалла, если идет работа с прошлыми воплощениями.


Но никто не говорит о том, что вмешавшись в человеческий мозг, эти горе специалисты не включают всё так, как было до их вмешательства. Они ОЧЕНЬ далеки до совершенства ТВОРЦА, поэтому после включения человека обратно в процесс жизнедеятельности много деталей остается «лишних», т.е. не включенных.

У человека начинает сыпаться здоровье, ни с того ни с сего появляются болячки, о которых они раньше не знали. В итоге нарушается работа всего биологического организма, и срок жизни человека укорачивается, т.к. у ТВОРЦА «лишних деталей» нет. Поэтому будьте очень осторожны в выборе практик для своего самосовершенствования. Самая безобидная из них – медитация. Просто будьте чаще наедине с собой, услышьте, прежде всего, самого себя. У Вас для этого есть всё необходимое, и ходить далеко не нужно!

Японцы говорят: «Чтобы достичь слияния с Макрокосмосом надо носить в сердце ребенка. Но не неответственного за свои поступки, а любопытного, ищущего…»

За счет чего происходит обмен информацией между человеком и этими полями? За счет ДНК, КРИСТАЛЛА И ШИШКОВИДНОЙ ЖЕЛЕЗЫ.

КРИСТАЛЛ

КРИСТАЛЛ – это аккумулятор и хранилище энергий, он расположен в районе вилочковой железы, его физически не видно, но ученые доказали, что в районе сердца есть мощное энергетическое поле неизвестного происхождения. Именно в КРИСТАЛЛЕ хранятся все настройки на наши Хроники Акаши, т.е. вся информация о прошлых жизнях.

Здесь же заложен жизненный потенциал человека – его жизненная энергия. Она имеет очень высокую концентрацию и частоту вибрации. По мере ее использования в течении жизни меняется концентрация, а частота остается постоянной. Да, она ограничена! Но если разумно ее использовать, то она рассчитана на более чем 500лет жизни.

Больше всего пожирает энергию КРИСТАЛЛА низкочастотные эмоции. Объясню почему. Для нормального функционирования биологического тела необходима определенная частота, заданная в ограниченном диапазоне.

Когда человек проявляет эмоции подобные гневу, агрессии, стыду, общая частота тела понижается, КРИСТАЛЛ начинает выравнивать частоту до уровня жизнеспособной для биологии. Когда энергии становится всё меньше в КРИСТАЛЛЕ, болячки начинают сыпаться одна за другой.

Единственно правильный способ выйти из этого состояния – начать РАДОВАТЬСЯ. Энергия РАДОСТИ очень благотворно влияет на нормализацию его работы, она очень близка по частоте к энергиям внутри КРИСТАЛЛА. Но РАДОСТИ не фальшивой ради улыбки, а искренней, как у детишек.

Чем больше человек пребывает осознанно в состоянии МИРА и РАДОСТИ, тем больше тело напитывается этой высокой по частоте энергией и тем больше вероятность выйти на контакт с собственным Я, начать считывать с Хроник Акаши свои задачи на это воплощение и уроки прошлых, т.е.

найти себя в этом мире, собрать все свои частички воедино, найти своё предназначение. Поэтому ПУТЬ к СЕБЕ лежит именно через МИР внутри Вашей биологии. Это самый оптимальный и энергетически низкозатратный способ связаться с СВЕРХКОМПЬЮТЕРОМ.


Но КРИСТАЛЛ – это только аккумулятор, дающий питание и позволяющий задействовать остальные части этого сложного многомерного механизма.
Как Вы думаете что в нашем физическом теле переносит информацию и энергию между КРИСТАЛЛОМ и объектом, отвечающим за считывание информации из СВЕРХКОМПЬЮТЕРА? Это нити ДНК.

ДНК

О ДНК наша наука знает совсем немного. О «мусоре» в ней мы много слышали от наших ученых, но на самом деле ДНК – это антенна, которая обеспечивает настройку на частоты СВЕРХКОМПЬЮТЕРА, это провода, по которым мгновенно передается информация по всему телу.

Именно активация слоев ДНК как раз и способствует увеличению получения информации через шишковидную железу. Потому то человек и является голографичным, любая информация о любой части тела, будь то порез или травма, мгновенно отражается в КРИСТАЛЛЕ и соответственно в ДНК.

О ШИШКОВИДНОЙ ЖЕЛЕЗЕ и ее помощниках расскажу в следующей статье  и на

открытом вебинаре «Как обыграть МАТРИЦУ», который состоится

http://s-creator.ru/?page_id=336

и видео вебинаров в  открытом доступе  можно посмотреть  по ссылке

http://love-myself.ru/video-audio

Источник: http://love-myself.ru/archives/2195

Человеческий мозг: непознанный биологический компьютер

Человеческий мозг: непознанный биологический компьютер

Прошлое столетие ознаменовало сильнейший скачок развития человечества. Пройдя нелегкий путь от букваря до интернета, люди так и не смогли разгадать главную загадку, терзающую умы великих на протяжении не одной сотни лет, а именно, как работает и на что способен человеческий мозг?

До сих пор этот орган остается самым плохо изученным, а ведь именно он сделал человека тем, кем он сейчас является – высшей ступенью эволюции. Мозг, продолжая хранить свои секреты и тайны, продолжает определять деятельность и сознание человека на каждом этапе его жизни.

Разгадать все возможности, на которые он способен, не в силах пока ни один современный ученый. Именно поэтому вокруг одного из главнейших органов нашего организма сконцентрировано большое количество мифов и ничем не обоснованных гипотез.

Это может свидетельствовать только о том, что скрытый потенциал человеческого мозга только предстоит изучить, а пока его способности выходят за грани уже устоявшихся представлений о его работе.

Pixabay/geralt

Устройство мозга

Данный орган состоит из огромного количества связей, создающих устойчивое взаимодействие клеток и отростков. Ученые предполагают, что, если эту связь представить в виде прямой линии, ее длина восьмикратно превысит дистанцию к Луне.

Массовая доля этого органа в общей массе тела составляет не более 2%, а его вес варьируется в пределах 1019-1960 грамм. С момента рождения и до последнего вздоха человека он ведет непрерывную деятельность.

Поэтому ему необходимо поглощать 21% всего кислорода, постоянно поступающего в организм человека.

Ученые составили примерную картину усваивания мозгом информации: его память может вмещать в себе от 3 до 100 терабайт, в то время как память современного компьютера в данный момент совершенствуется до объема 20 терабайт.

Нейронные ткани мозга на протяжение жизнедеятельности организма погибают, а новые – не образуются. Это заблуждение, абсурдность которого доказала Элизабет Гуд. Нервная ткань и нейроны постоянно обновляются, и на смену умершим приходят новые соединения. Исследования подтвердили, что в очагах клеток, уничтоженных инсультом, организм человека способен «наращивать» новый материал.

Мозг человека раскрыт только на 5-10%, все остальные возможности не задействованы.

Некоторые ученые объясняли это тем, что природа, создав такой сложный и развитой механизм, придумала для него защитную систему, оградив орган от излишней нагрузки. Это не так.

Достоверно известно, что мозг во время любой деятельности человека задействован на все 100%, просто в момент совершения каких-либо действий реагируют отдельные его части поочередно.

Сверхспособности. Чем может удивить человеческий разум?

Некоторые люди, внешне не показывающие признаки наличия невероятных способностей, могут обладать поистине невероятными возможностями. Проявляются они не у каждого, но ученые утверждают, что регулярные усиленные тренировки мозга способны развить сперхспособности.

Хотя секрет «отбора» людей, которые могут обладать правом называться гением, не раскрыт до сих пор. Кто-то умеет грамотно выходить из затруднительных ситуаций, кто-то на подсознательном уровне предчувствует приближающуюся опасность.

Но более интересными с точки зрения науки являются следующие сверхспособности:

  • Возможность выполнения математических операций любой сложности без помощи калькулятора и расчетов на бумаге;
  • Возможность создавать гениальные творения;
  • Фотографическая память;
  • Скоростное чтение;
  • Экстрасенсорные способности.

Удивительные случаи раскрытия уникальных способностей человеческого мозга

За всю историю существования людей появилось большое количество историй, подтверждающих тот факт, что мозг человека может иметь скрытые способности, адаптироваться к изменению ситуации и перекладывать определенные функции с пострадавшего отдела на здоровую часть.

Сонарное зрение. Такая способность вырабатывается обычно после потери зрения. Дэниэл Киш сумел освоить технику эхолокации, присущую летучим мышам. Издаваемые им звуки, например, щелчок языком или пальцами, помогают ему ходить без трости.

Мнемоника – уникальная техника, позволяющая воспринимать и запоминать любой объем информации, независимо от ее характера. Многие люди осваивают ее в зрелом возрасте, а у американца Кима Пика — это врожденный дар.

Дар предвиденья. Некоторые люди уверяют, что способны видеть будущее. На данный момент этот факт полностью не доказан, но истории известно немало людей, которых такая способность прославила на весь мир.

Феномены, на которые способен человеческий мозг

Карлос Родригез в 14 лет после аварии потерял более 59% мозга, но при этом до сих пор живет совершенно обычной жизнью.

Яков Циперович после клинической смерти и недельного пребывания в коматозном состоянии перестал спать, мало ест и не стареет. С этого момента прошло уже три десятка лет, а он по-прежнему молод.

Фениас Гейдж в середине 19го века получил ужасную травму. Сквозь его голову прошел толстый лом, лишив его доброй части мозга. Медицина тех лет не была достаточна продвинута, и врачи предвещали ему скорую смерть. Однако мужчина не только не умер, но и сохранил память и ясность сознания.

Человеческий мозг, как и его тело, необходимо подвергать постоянным тренировка. Это могут быть как сложные, специально разработанные программы, так и чтение книг, разгадывание ребусов и логических задач.

При этом не следует забывать про насыщение данного органа питательными элементами. К примеру, усилитель мозговой активности HeadBooster http://hudeemz.com/headbooster обладает большим количеством таковых.

Но все же, только постоянные тренировки позволяют мозгу постоянно развиваться и увеличивать свои возможности.

Перед применением советов и рекомендаций, изложенных на сайте Medical Insider, обязательно проконсультируйтесь с врачом.

Приглашаем подписаться на наш канал в Яндекс Дзен

 

Источник: https://medicalinsider.ru/nevrologiya/chelovecheskijj-mozg-nepoznannyjj-biologicheskijj-kompyuter/

10 мифов о работе головного мозга: правда и вымысел

Человеческий мозг: непознанный биологический компьютер

Широко известно мнение, что у некоторых людей лучше работает правое полушарие головного мозга, а у некоторых – левое. Многие считают, что это истинная правда, однако в действительности это является мифом.

И о том, почему это миф, мы расскажем в этой статье, заодно обсудив и ещё несколько интересных фактов о работе человеческого мозга. Сразу же сделаем оговорку: некоторые факты соответствуют действительности, а некоторые – вовсе нет.

И о том, чему же стоит доверять, мы, естественно, скажем.

Миф №1: Мозг даже взрослого человека всегда меняется

Это утверждение является истинным. Человеческий мозг – это биологический компьютер, имеющий два эволюционных механизма: обучение на основе ожидания опыта и обучение на основе получения опыта.

Наверное, вы знаете, что в детском мозге происходит формирование на 100% больше синапсов (нейронных связей), нежели в мозге взрослого.

Самые первые синапсы программируются предполагаемыми явлениями и событиями, и на первых годах жизни человека посредством личного опыта мозг сам отбирает нужные и не нужные для сохранения синапсы.

Однако механизм обучения новым навыкам адаптируется во взрослом возрасте по мере приближения человека к конкретному количеству синапсов.

Так и получается, что далеко не всегда обучение обуславливается ожидаемым опытом, ведь человек должен постоянно осваивать новые навыки, соответствуя, к примеру, тенденциям времени. Таким образом, вместо потерянных за неактуальностью синапсов формируются новые, рассчитанные на кодировку нового опыта. И этот метод обучения доступен для человека всю жизнь.

Миф №2: Алкоголь убивает клетки мозга

Правдой это является лишь частично. Естественно, взглянув на пьяного человека, сразу же можно сделать вывод, что алкоголь влияет на мозг, т.к. наблюдается нарушение моторики, спутанность речи и т.д. Кроме того, у человека может разболеться голова, его может тошнить, он может испытывать похмельный синдром. Да, реакция мозга крайне отрицательна, но алкоголь не убивает клетки мозга.

На самом деле спиртное повреждает дендриды – окончания нейронов, по причине чего и нарушается связь между ними. Но и повреждения дендридов обратимы.

Другие же нарушения, такие как спутанность сознания, амнезия, отсутствие координации, паралич глаз и т.д. вызываются не спиртным, а дефицитом витамина B1 и тиамина.

Но, несмотря на то, что мозговые клетки не умирают под воздействием дурманящих напитков, на мозг всё равно оказывается крайне деструктивное воздействие.

Миф №3: Воспоминания человека о прошлых событиях его жизни не являются точными

Это правда. Например, исследователь памяти Элизабет Лофтус доказала, что человеку вполне можно привить ложные воспоминания. Она провела эксперимент, в котором каждому участнику предложили по три истории из детства, которые подтвердили родственники, и по одной ложной истории, в которой участник потерялся в магазине, когда ему было пять лет.

После того как участники изучили истории, они написали свои воспоминания обо всех представленных событиях. Если же они не помнили события, они могли так и ответить, однако в трёх экспериментах 6 человек из 24 всегда «вспоминали» ложное событие во всех подробностях.

Согласно мнению Лофтус, обстоятельствами, в которых формируются фальшивые воспоминания, являются общественные ожидания, моделирование выдуманных событий при отсутствии точных воспоминаний и предложение не размышлять о том, имело ли событие место в действительности.

Отсюда и вывод: наши воспоминания не всегда являются точными, т.к. формируются под воздействие различных факторов, а по прошествии времени вообще становятся «коктейлем» из фактов памяти и картинок воображения.

Миф №4: Человек знает, что может сделать его счастливым

Это далеко не так. И возможно вы и сами можете это доказать: вспомните хотя бы что-то, чего вы хотели «больше всего на свете», а затем вспомните степень испытанного счастья. Всегда ли действительность соответствовала ожиданиям?

Профессор психологии Дэниел Гилперт доказал своими исследованиями, что люди плохо представляют себе результаты событий как счастливых, так и печальных. Они переоценивают степень своего счастья или несчастья, т.к. и печаль и счастье длятся намного короче ожидаемого срока. А конкретно счастье всегда максимизируется, т.к. предвосхищается.

Миф №5: Мозговая активность идёт на спад после 50 лет

Не верьте этому на 100% — несмотря на то, что активная память человека с возрастом становится несколько хуже, а мозговые операции проводятся медленнее, всё не так уж плохо.

Профессор из Стэнфорда Лора Карстенсен предложила теорию, согласно которой разница в памяти молодых людей и людей в возрасте обусловлена разницей временного фокуса.

Молодое поколение, не задумывающееся о смерти, стремится запомнить максимальное количество информации, считая, что она им пригодится потом. А пожилые люди воспринимают информацию более ограниченно и выборочно, т.к. наиболее важным для них является положительное эмоциональное состояние.

Но более интересно то, что, несмотря на некоторый дефицит памяти, с течением лет она наполняется большим количеством позитивных воспоминаний.

Миф №6: Мозг человека самый большой

Ещё одна неправда. Мировое научное сообщество до сих пор не пришло к единому пониманию того, что делает человека умным, но все сходятся в том, что человек – самое умное существо на планете. Наверное, это и есть причина, по которой многие думают, что у человека самый большой мозг.

На самом деле мозг человека весит, в среднем, 1 361 грамм. Мозг дельфинов весит примерно столько же. Но вот мозг кашалота, не считающегося самым умным животным на Земле, весит примерно 7 800 грамм.

Если же посмотреть с другой стороны, можно увидеть, что мозг собаки, к примеру, гончей, весит примерно 72 грамма, а вес мозга орангутанга равен приблизительно 370 граммам – не обладая большим мозгом, эти животные являются очень умными.

Так, мы получаем ещё один интересный факт: не важно, насколько большим является мозг живого существа. Важно то, какое соотношение имеет вес его мозга и вес его тела.

Миф №7: Слушая Моцарта, человек становится умнее

К сожалению, и это является заблуждением.

Первые изыскания на эту тему провели исследователи из Калифорнийского университета Франс Раушер и Гордон Шоу – тогда эксперимент проводился с группой студентов колледжа: после прослушивания фрагмента сонаты Моцарта для фортепиано в течение 10 минут у участников было обнаружено краткосрочное улучшение пространственно-образного мышления, после чего, собственно, и появился миф о том, что музыка Моцарта улучшает мозговую активность. Однако даже этого результата повторно достичь не удалось.

Миф №8: У одних людей лучше работает правое полушарие головного мозга, а у других – левое

Это один из самых распространённых мифов, хотя, в нём и есть доля правды.

Все мы знаем, что разные полушария мозга отвечают за разные функции, но, одновременно с этим, между этими полушариями больше сходств, нежели различий. К примеру, область Брока (языковой центр) расположен в левой передней доле мозга, но не все способности, связанные с языком, ограничены только левым полушарием.

Просто оба полушария взаимодействуют друг с другом, но левое выполняет языковые функции лучше. Точно так же и правое полушарие лучше выполняет пространственные задачи. Другими словами, большая часть людей решает определённый тип задач одной частью мозга несколько эффективнее, чем другой, но в процессе всегда принимают участие оба полушария.

Обмену информации же способствует особый орган – мозолистое тело.

Миф №9: Человек использует только 10% возможностей мозга

Спешим вас обрадовать (а может, и огорчить), но это тоже заблуждение. Появилось оно после того как неверно было интерпретировано утверждение, которое сделал в XIX столетии психолог Уильям Джеймс, заметив, что, на его взгляд, среднестатистический взрослый человек использует не более 10% потенциала своего интеллекта.

Учёные, изучавшие пациентов с повреждениями мозга, пришли к выводу, что у них функционировали абсолютно все участки мозга, а МРТ показала наличие в каждой из областей разных функций.

Кроме того, если ампутировать какую-либо часть тела, то отдел мозга, который контролировал ей, начинает использоваться соседними частями тела, а значит, даже утратившие нейронные связи части мозга будут использоваться повторно.

Также стоит отметить, что мозг, который занимает всего 2-3% от общей массы тела, потребляет 20% получаемого организмом кислорода, так что, такой ресурсопотребляющий орган просто не может быть на 90% бездействующим.

Миф №10: Новые нейроны перестают появляться после рождения человека

Последнее неверное заблуждение, о котором мы расскажем. Нейронные клетки держат под контролем поведение человека, его память и внимание, эмоции и т.д.

Поведение взрослого человека, как правило, является фиксированным, поэтому в формировании новых нейронов просто нет необходимости, а большинство изменений достигается посредством формирования новых синапсов, однако каждое воспоминание человека нуждается в электрической активности нейронов.

Учитывая то, что человек, взрослея, получает новую информацию и опыт, места для хранения новых данных (нейронов) просто не хватило бы с течением лет, а получаемая информация просто стиралась бы, соответственно, новые нейроны нужны – именно поэтому они и формируются – в гиппокампе – части мозга, отвечающей за все воспоминания.

Хочется верить, что теперь вы усвоили для себя, что является правдой о мозге человека, а на что не стоит обращать внимания. Есть, конечно же, ещё множество подобных мифов, но о них мы расскажем в наших будущих статьях.

Тренируйте мозг!

Источник: https://4brain.ru/blog/10-%D0%BC%D0%B8%D1%84%D0%BE%D0%B2-%D0%BE-%D1%80%D0%B0%D0%B1%D0%BE%D1%82%D0%B5-%D0%B3%D0%BE%D0%BB%D0%BE%D0%B2%D0%BD%D0%BE%D0%B3%D0%BE-%D0%BC%D0%BE%D0%B7%D0%B3%D0%B0/

Как соединить человеческий мозг и компьютер

Человеческий мозг: непознанный биологический компьютер
Для пациента T6 2014 стал самым счастливым годом жизни. Это был год, когда она смогла управлять планшетным компьютером Nexus с помощью электромагнитного излучения своего мозга и буквально перенестись из эры 1980-х с их диско-ориентированными системами (Disk Operating System, DOS) в новых век андроидной ОС.

T6 – женщина 50 лет, страдающая боковым амиотрофическим склерозом, известным также как болезнь Лу Герига, которая вызывает прогрессирующее повреждение двигательных нейронов и паралич всех органов тела. T6 парализована почти полностью от шеи и вниз.

До 2014 года она абсолютно не могла взаимодействовать с внешним миром.

Паралич может наступить и от повреждений костного мозга, инсульта или нейродегенеративных заболеваний, которые блокируют способность говорить, писать и вообще как-либо общаться с окружающими.

Эра интерфейсов, связывающих мозг и машину, расцвела два десятилетия назад, в процессе создания ассистивных устройств, которые бы помогли таким пациентам.

Результат был фантастическим: слежение за взглядом (eye-tracking) и слежение за положением головы пользователя системы (head-tracking) позволили отслеживать движения глаз и использовать их как выходные данные для управления курсором мыши на экране компьютера.

Иногда пользователь мог даже кликать по ссылке, фиксируя свой взгляд на одной точке экрана. Это называется »время задержки».

Тем не менее, системы eye-tracking были тяжелы для глаз пользователя и слишком дороги.

Тогда появилась технология нейронного протезирования, когда устраняется посредник в виде сенсорного органа и мозг связывается с компьютером напрямую.

В мозг пациента вживляется микрочип, и нейросигналы, связанные с желанием или намерением, могут быть расшифрованы с помощью сложных алгоритмов в режиме реального времени и использованы для контроля курсора на интерфейсе компьютера.

Два года назад, пациентке T6 имплантировали в левую сторону мозга, отвечающую за движение, 100-канальную электродную установку.

Параллельно Стэнфордская лаборатория работала над созданием прототипа протеза, позволяющего парализованным печатать слова на специально разработанной клавиатуре, просто думая об этих словах.

Устройство работало следующим образом: встроенные в мозг электроды записывали мозговую активность пациентки в момент, когда она смотрела на нужную букву на экране, передавали эту информацию на нейропротез, интерпретирующий затем сигналы и превращающий их в непрерывное управление курсором и щелчками на экране.

Однако этот процесс был чрезвычайно медленным. Стало понятно, что на выходе получится устройство, работающее без непосредственного физического соединения с компьютером через электроды. Сам интерфейс тоже должен был выглядеть интереснее, чем в 80-х.

Команда клинического института BrainGate, занимающаяся этими исследованиями, поняла, что их система «указания и щелчка» была похожа на нажатие пальцем на сенсорный экран. И поскольку сенсорными планшетами большинство из нас пользуется каждый день, то рынок их огромен.

Достаточно просто выбрать и купить любой из них.

Парализованная пациентка T6 смогла «нажимать» на экран планшета Nexus 9. Нейропротез связывался с планшетом через протокол Bluetooth, то есть как беспроводная мышь.

Сейчас команда работает над продлением работоспособности имплантата на срок всей жизни, а также разрабатывает системы других двигательных маневров, таких как «выделить и перетащить» и мультисенсорные движения. Кроме того, BrainGate планируют расширить свою программу на другие операционные системы.

Компьютерный чип из живых клеток мозга

Несколько лет назад исследователи из Германии и Японии смогли симулировать 1 процент активности человеческого мозга за одну секунду. Это стало возможным только благодаря вычислительной мощности одного из самых сильных в мире суперкомпьютеров.

Но человеческий мозг до сих пор остается самым мощным, низко энергозатратным и эффективным компьютером. Что если бы можно было использовать силу этого компьютера для питания машин будущих поколений?

Как бы дико это не звучало, нейробиолог Ош Агаби запустил проект «Конику» (Koniku) как раз для реализации этой цели. Он создал прототип 64-нейронной кремниевой микросхемы. Первым приложением этой разработки стал дрон, который может «чуять» запах взрывчатых веществ.

Одой из самых чутких обонятельных способностей отличаются пчелы. На самом деле, они даже перемещаются в пространстве по запаху.

Агаби создал дрон, который не уступает пчелиной способности распознавать и интерпретировать запахи.

Он может быть использован не только для военных целей и обнаружении бомб, но и для исследования сельхозугодий, нефтеперерабатывающих заводов – всех мест, где уровень здоровья и безопасности может быть измерен по запаху.

В процессе разработки Агаби и его команда решали три основные проблемы: структурировать нейроны так же, как они структурированы в мозге, прочитать и записать информацию в каждый отдельный нейрон и создать стабильную среду.

Технология индуцированной дифференцировки плюрипотентной клетки – метод, когда зрелая клетка, например, кожи, генетически встроена в исходную стволовую клетку, позволяет любой клетке превратиться в нейрон. Но как и любым электронным компонентам, живым нейронам нужна специальная среда обитания.

Поэтому нейроны были помещены в оболочки с управляемой средой, для регулировки уровня температуры и водорода внутри, а также для подачи им питания. Кроме того, такая оболочка позволяет контролировать взаимодействие нейронов между собой.

Электроды под оболочкой позволяют считывать или записывать информацию на нейроны. Агаби описывает этот процесс так:

«Мы заключаем электроды в оболочку из ДНК и обогащенных протеинов, которая стимулирует нейроны формировать искусственную тесную связь с этими проводниками. Так, мы можем считывать информацию с нейронов или, наоборот, посылать информацию на нейроны тем же способом или посредством света или химических процессов».

Агаби верит, что будущее технологий – за раскрытием возможностей так называемого wetware – человеческого мозга в корреляции с машинным процессом.

«Нет практических границ для того, какими большими мы сделаем наши будущие устройства или как по-разному мы может моделировать мозг. Биология – это единственная граница».

Дальнейшие планы «Конику» включат разработку чипов:

  • с 500 нейронами, который будет управлять машиной без водителя;
  • с 10 000 нейронами – будет способен обрабатывать и распознавать изображения так, как это делает человеческий глаз;
  • с 100 000 нейронами – создаст робота с мультисенсорным входом, который будет практически неотличим от человека по перцептивным свойствам;
  • с миллионом нейронов – даст нам компьютер, который будет думать сам за себя.

Чип памяти, встроенный в мозг

Каждый год сотни миллионов людей испытывают сложности из-за потери памяти. Причины этому разные: повреждения мозга, которые преследуют ветеранов и футбольных игроков, инсульты или болезнь Альцгеймера, проявляющиеся в старости, или просто старение мозга, которое ожидает всех нас.

Доктор Теодор Бергер, биомедицинский инженер Университета Южной Калифорнии, на средства Агенства по перспективным оборонным исследованиям Министерства обороны США DARPA, тестирует расширяющий память имплантат, который имитирует обработку сигнала в момент, когда нейроны отказываются работать с новыми долгосрочными воспоминаниями.

Чтобы устройство заработало, ученые должны понять, как работает память. Гиппокамп – это область мозга, которая отвечает за трансформацию краткосрочных воспоминаний в долгосрочные. Как он это делает? И возможно ли симулировать его деятельность в рамках компьютерного чипа?

«По существу, память – это серия электрических импульсов, которые возникают с течением времени и которые генерируются определенным числом нейронов», – объясняет Бергер, – «Это очень важно, так как это значит, что мы можем свести этот процесс к математическому уравнению и поместить его в рамки вычислительного процесса».

Так, нейробиологи начали декодировать поток информации внутри гиппокампа. Ключом к этой дешифровке стал сильный электрический сигнал, который идет от области органа под названием СА3 – «входа» гиппокампа – к СА1 – «выходящему» узлу. Этот сигнал ослабляется у людей с расстройством памяти.

«Если бы мы могли воссоздать его, используя чип, мы бы восстановили или даже увеличили объем памяти», — говорит Бергер.

Но проследить этот путь дешифровки сложно, так как нейроны работают нелинейно. И любой незначительный фактор, замешанный в процессе, может привести к совсем другим результатам.Тем не менее, математика и программирование не стоят на месте, и сегодня могут вместе создать самые сложные вычислительные конструкции со множеством неизвестных и множеством «выходов».

Для начала ученые приучили крыс нажимать тот или иной рычаг, чтобы получить лакомство.

В процессе запоминания крысами и превращения этого воспоминания в долгосрочное, исследователи тщательно фиксировали и записывали все трансформации нейронов, и затем по этой математической модели создали компьютерный чип.

Далее, они ввели крысам вещество, временно дестабилизирующее их способность запоминать и ввели чип в мозг. Устройство воздействовало на «выходящий» орган СА1, и, вдруг, ученые обнаружили, что воспоминание крыс о том, как добиться лакомства восстановилось.

Следующие тесты были проведены на обезьянах. На этот раз ученые сконцентрировались на префронтальной коре головного мозга, которая получает и модулирует воспоминания, полученные из гиппокампа.

Животным была продемонстрирована серия изображений, некоторые из который повторялись. Зафиксировав активность нейронов в момент узнавания ими одной и то же картинки, была создана математическая модель и микросхема, на ее основе.

После этого работу префронтальной коры обезьян подавили кокаином и ученые вновь смогли восстановить память.

Когда опыты проводились на людях, Бергер избрал 12 волонтеров, больных эпилепсией, с уже имплантированными электродами в головной мозг, чтобы проследить источник их припадков. Повторяющиеся судороги разрушают ключевые части гиппокампа, необходимые для формирования долгосрочных воспоминаний. Если, к примеру, изучить активность мозга в момент припадков, можно будет восстановить воспоминание.

Точно также, как и в предыдущих экспериментах, был зафиксирован специальный человеческий «код памяти», который впоследствии сможет предсказать паттерн активности в клетках СА1, основываясь на данных, хранящихся или возникающих в СА3. В сравнении с «настоящей» мозговой активностью, такой чип работает с точностью около 80%.

Пока рано говорить о конкретных результатах после опытов на людях. В отличие от моторного кортекса головного мозга, где каждый отдел отвечает за определенный орган, гиппокамп организован хаотично. Также пока рано говорить, сможет ли такой имплантат вернуть память тем, кто страдает от повреждений «выходящего» участка гиппокампа.

Проблемный остается вопрос геерализации алгоритма для такого чипа, так как экспериментальный прототип был создан на индивидуальных данных конкретных пациентов. Что, если код памяти разный для всех, в зависимости от типа входящих данных, которые он получает? Бергер напоминает, что и мозг ограничен своей биофизикой:

«Есть только такое количество способов, которыми электрические сигналы в гиппокампе могут быть обработаны, которое несмотря на свое множество, тем не менее ограничено и конечно», — говорит ученый.

Анастасия Львова

Источник/Оригинал

Источник: https://fastsalttimes.com/sections/technology/809.html

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.