Гибель клеток жизненно важна для продолжения жизни

Остановка сердца и мозговая кома: клиническая смерть с точки зрения медицины

Гибель клеток жизненно важна для продолжения жизни

M24.ru/Михаил Сипко

“Человек смертен, но основная его беда в том, что он смертен внезапно”, – эти слова, вложенные Булгаковым в уста Воланда, прекрасно описывают ощущения большинства людей.

Наверное, не существует человека, который бы не боялся смерти. Но наряду с большой смертью существует смерть маленькая – клиническая.

Что это такое, почему люди, пережившие клиническую смерть, часто видят божественный свет и не есть ли это отложенный путь в рай – в материале M24.ru.

Клиническая смерть с точки зрения медицины

Проблемы изучения клинической смерти как пограничного состояния между жизнью и смертью остаются одними из важнейших в современной медицине.

Разгадка множества ее тайн трудна еще и потому, что многие люди, пережившие клиническую смерть, не восстанавливаются до конца, а больше половины пациентов с подобным состоянием не удается реанимировать, и они погибают уже по-настоящему – биологически.

Итак, клиническая смерть – это состояние, сопровождающееся остановкой сердечной деятельности, или асистолией (состояние, при котором прекращают сокращаться сначала различные отделы сердца, а затем наступает остановка сердца), остановкой дыхания и глубокой, или запредельной, мозговой комой.

С первыми двумя пунктами все понятно, а про кому стоит объяснить подробнее. Обычно врачи в России пользуются так называемой шкалой Глазго. По 15-балльной системе оценивается реакция открывания глаз, а также двигательные и речевые реакции.

15 баллов по этой шкале соответствуют ясному сознанию, а минимальный балл – 3, когда мозг не реагирует на любые виды внешнего воздействия, соответствует запредельной коме.

После остановки дыхания и сердечной деятельности человек умирает не сразу. Практически мгновенно отключается сознание, потому что мозг не получает кислорода и наступает его кислородное голодание. Но тем не менее в короткий период времени, от трех до шести минут, его еще можно спасти.

Примерно через три минуты после остановки дыхания начинается гибель клеток в коре головного мозга, так называемая декортикация.

Кора головного мозга отвечает за высшую нервную деятельность и после декортикации реанимационные мероприятия хоть и могут пройти успешно, но человек может быть обречен на вегетативное существование.

ТАСС/Сергей Бобылев

Еще через несколько минут начинают гибнуть клетки других отделов головного мозга – в таламусе, гиппокампе, больших полушариях мозга.

Состояние, при котором все отделы головного мозга лишились работоспособных нейронов, называется децеребрацией и фактически соответствует понятию биологической смерти.

То есть оживление людей после децеребрации в принципе возможно, но человек будет обречен до конца жизни долго находиться на искусственной вентиляции легких и других поддерживающих существование процедурах.

Дело в том, что витальные (жизненно важные – M24.ru) центры располагаются в продолговатом мозгу, который регулирует дыхание, сердцебиение, сердечно-сосудистый тонус, а также безусловные рефлексы вроде чихания.

При кислородном голодании продолговатый мозг, фактически являющийся продолжением спинного, гибнет одним из последних отделов мозга.

Однако несмотря на то, что витальные центры могут быть не повреждены, к тому моменту уже наступит декортикация, делающая невозможной возвращение к нормальной жизни.

Другие органы человека, такие как сердце, легкие, печень и почки, могут обходиться без кислорода намного дольше. Поэтому не стоит удивляться пересадке, например, почек, взятых от пациента с уже погибшим мозгом. Несмотря на смерть мозга, почки еще некоторое время находятся в рабочем состоянии. А мышцы и клетки кишечника живут без кислорода на протяжении шести часов.

В настоящее время разработаны методы, которые позволяют увеличить продолжительность клинической смерти до двух часов. Такой эффект достигается при помощи гипотермии, то есть искусственного охлаждения организма.

ТАСС/Владимир Смирнов

Как правило (если, конечно, дело происходит не в клинике под наблюдением врачей), достаточно трудно определить, когда именно произошла остановка сердца. По действующим нормативам врачи обязаны проводить реанимационные мероприятия: массаж сердца, искусственное дыхание в течение 30 минут от начала. Если за это время реанимировать больного не удалось, то констатируется биологическая смерть.

Впрочем, существует несколько признаков биологической смерти, которые появляются уже через 10–15 минут после гибели мозга. Сначала появляется симптом Белоглазова (при надавливании на глазное яблоко зрачок становится похож на кошачий), а затем высыхает роговица глаз. При наличии этих симптомов реанимацию не проводят.

Сколько людей благополучно переживают клиническую смерть

Может показаться, что большинство людей, оказывающихся в состоянии клинической смерти, благополучно из нее выходят. Однако это не так, лишь три-четыре процента пациентов удается реанимировать, после чего они возвращаются к нормальной жизни и не страдают какими-либо нарушениями психики или утратой функций организма.

Еще шесть-семь процентов пациентов, будучи реанимированными, тем не менее не восстанавливаются до конца, страдают различными поражениями головного мозга. Подавляющее большинство пациентов погибает.

Такая печальная статистика во многом обусловлена двумя причинами.

Первая из них – клиническая смерть может возникнуть не под наблюдением врачей, а, например, на даче, откуда до ближайшей больницы как минимум полчаса езды.

В таком случае медики приедут тогда, когда спасти человека уже будет невозможно. Иногда невозможно своевременно провести дефибрилляцию при возникновении фибрилляции желудочков сердца.

Второй причиной остается характер поражений организма при клинической смерти. Если речь идет о массивной кровопотере, реанимационные мероприятия практически всегда оказываются безуспешными. То же самое касается и критического поражения миокарда при инфаркте.

Например, если у человека в результате закупорки одной из коронарных артерий поражено более 40 процентов миокарда, смертельный исход неизбежен, потому что без сердечных мышц организм не живет, какие бы реанимационные мероприятия при этом ни проводились.

Таким образом, повысить выживаемость при клинической смерти можно в основном за счет оснащения дефибрилляторами мест скопления людей, а также организацией летучих бригад скорой в труднодоступных районах.

Клиническая смерть для пациентов

Если клиническая смерть для врачей является неотложным состоянием, при котором необходимо срочно прибегнуть к реанимационным мероприятиям, то для пациентов она зачастую представляется дорогой в светлый мир. Многие люди, пережившие клиническую смерть, рассказывали о том, что видели свет в конце туннеля, кто-то встречался со своими давно умершими родственниками, иные смотрели на землю с высоты птичьего полета.

“У меня был свет (да, знаю как это звучит), и я как бы со стороны все видела. Было блаженство, что ли. Никакой боли впервые за столько времени.

А после клинической смерти возникло такое ощущение, что я жила какой-то чужой жизнью и сейчас просто скольжу обратно в свою шкуру, свою жизнь – единственную, в которой мне удобно.

Она немного жмет, но это приятная теснота, как потертая пара джинсов, которые носишь годами”, – говорит Лидия, одна из пациенток, которая перенесла клиническую смерть.

M24.ru/Михаил Сипко

Именно эта особенность клинической смерти, ее способность вызывать яркие образы, до сих пор служит предметом многочисленных споров.

С чисто научной точки зрения происходящее описывается довольно просто: возникает гипоксия мозга, что ведет к галлюцинациям при фактическом отсутствии сознания.

Какие именно образы возникают у человека в этом состоянии – вопрос строго индивидуальный. Механизм возникновения галлюцинаций пока окончательно не выяснен.

Одно время была очень популярна эндорфинная теория. Согласно ей, большая часть того, что люди чувствуют при клинической смерти, может быть приписана выбросу эндорфинов из-за чрезвычайного напряжения.

Поскольку эндорфины отвечают за получение удовольствия, а в частности даже за оргазм, нетрудно догадаться, что многие люди, пережившие клиническую смерть, считали после нее обычную жизнь лишь обременительной рутиной.

Однако в последние годы эта теория была развенчана, потому что исследователи не нашли доказательств того, что при клинической смерти выделяются эндорфины.

Есть и религиозная точка зрения. Как, впрочем, и в любых случаях, которые необъяснимы с позиций современной науки.

Многие люди (среди них есть и ученые) склонны считать, что после смерти человек попадает в рай или ад, а галлюцинации, которые видели пережившие клиническую смерть, лишь доказательство того, что ад или рай существуют, как и загробная жизнь вообще. Давать какую-либо оценку этим взглядам крайне затруднительно.

Тем не менее далеко не все люди испытывали райское блаженство при клинической смерти.

“Перенес клиническую смерть два раза меньше чем за один месяц. Ничего не видел. Когда вернули, я понял, что был нигде, в небытии. Ничего там у меня не было. Сделал выводы, что там освобождаешься от всего путем полной потери себя, наверное, вместе с душой. Теперь смерть меня не очень волнует, но жизни радуюсь”, – приводит свой опыт бухгалтер Андрей.

В целом исследования показали, что в момент человеческой смерти организм незначительно теряет в весе (буквально несколько граммов). Приверженцы религий поспешили заверить человечество в том, что в этот момент от человеческого тела отделяется душа. Однако научный подход гласит, что вес человеческого тела изменяется из-за происходящих в момент смерти в мозгу химических процессов.

Мнение врача

Современные стандарты предписывают проводить реанимацию в течение 30 минут после последнего сердцебиения. Реанимация прекращается при гибели мозга человека, а именно на регистрации на ЭЭГ. Мне лично доводилось один раз успешно реанимировать пациента, у которого остановилось сердце.

На мой взгляд, рассказы людей, перенесших клиническую смерть, в большинстве случаев являются мифом или выдумкой. Я ни разу не слышал таких рассказов от пациентов нашего лечебного учреждения. Равно как таких рассказов не было и от коллег.

Тем более, люди склонны называть клинической смертью совсем другие состояния.

Возможно, люди, которые якобы перенесли ее, на самом деле не умирали, у них просто было синкопальное состояние, то есть обморок.

Основной причиной, которая приводит к клинической смерти (как и, собственно, к смерти вообще) остаются сердечно-сосудистые заболевания.

Вообще говоря, такой статистики не ведется, но надо четко понимать, что сначала наступает клиническая смерть, а затем уже биологическая.

Поскольку первое место по смертности в России занимают болезни сердца и сосудов, то логично предположить, что именно они чаще всего приводят к клинической смерти.

Дмитрий Елецков

анестезиолог-реаниматолог, Волгоград

Так или иначе, феномен переживаний при клинической смерти заслуживает тщательного изучения. И ученым приходится довольно трудно, ведь помимо того, что необходимо установить, какие именно химические процессы в мозгу приводят к появлению тех или иных галлюцинаций, необходимо еще и отличать правду от выдумки.

Сюжет: От морей к звездам: как работает наука

Источник: https://www.m24.ru/articles/nauka/09062015/75818

Жизнь наших клеток. Часть 1 | CMT: Научный подход

Гибель клеток жизненно важна для продолжения жизни

© Ольга Степанюк

Жизнь клетки насыщена событиями не меньше, чем человеческая. Она полна страстей, опасностей и, как и всякая жизнь, рано или поздно заканчивается. Полина Лосева решила разобраться в том, какие сюжеты встречаются в судьбах клеток и как их развитие сказывается на нас с вами. А начать эту повесть мы решили с самого общего для всего живого — смерти.

«Клеточные трагедии» — это большой цикл статей о клетках, который продолжает пополняться. Это первый текст цикла. У него уже есть продолжение — рассказ о стрессе и том, как клетки с ним справляются

В общем виде жизненный путь клетки, как и любого живого существа, довольно прост. Вариантов развития событий немного: покой, размножение или смерть. Активно делиться в нашем организме могут лишь немногие клетки, остальные либо к этому вообще не способны, либо ждут сигнала извне.

В последнем случае в клетках обычно присутствуют белки, стимулирующие деление, но в небольших количествах, которые резко могут возрасти, если придет сигнал. В то же время во всех клетках постоянно находятся белки, запускающие клеточную гибель. К счастью, тоже обычно в небольших количествах.

То есть залогом спокойной жизни клетки является баланс между белками, запускающими деление, и «белками смерти». Все как у людей: хорошее самочувствие возникает тогда, когда хороших мыслей хотя бы не меньше, чем плохих.

Но допустим, что-то пошло не так. Как определить, что клетка умирает или уже мертва? В отличие от человека, здесь достаточно посмотреть на ее внешний вид.

Если вы заметили, что клетка приобрела неправильную форму и потеряла наружную мембрану, то, кажется, у нее неприятности. А если клетка распалась на кусочки, которые уже поедают ее соседи, то можно смело констатировать ее смерть.

Но попробуем отмотать время назад и разобраться, что могло послужить причиной такого бесславного конца.

Несчастный случай

От него не застрахован, увы, никто. Даже маленькую клетку можно случайно раздавить или проткнуть. Кроме этого, ее можно внезапно лишить еды. И если у клетки нет запасов на черный день, то энергия заканчивается моментально.

Обычно значительную часть энергии клетка тратит на контроль за транспортом веществ через наружную мембрану.

И если энергии нет, то транспорт нарушается и вещества могут фактически бесконтрольно сквозь нее проходить и ее повреждать, а это то же самое, как если бы мембрану проткнули.

Дальше ситуация развивается по стандартному сценарию: в мембране образуется дырка, сквозь нее вода течет в клетку, клетка разбухает и готовится лопнуть. Из дырки наружу выходят разные внутриклеточные вещества, их потихоньку поглощают соседние клетки.

Но часть веществ соседи съесть не успевают, и они расплываются по ткани, нередко вызывая воспаление. Такой тип гибели называется некрозом (не путать с некрозом ткани — почернением и распадом, который возникает, например при гангрене).

Интересно, что иногда клетка может пожертвовать собой на благо родины, это назвали некроптозом (по аналогии с апоптозом, о котором речь пойдет дальше). Например, бывает так, что клетка-макрофаг самоотверженно съела бактерию, но не смогла ее переварить.

Можно смириться с тем, что бактерия останется жить внутри, а можно проявить трагический героизм. Такая клетка-герой создает комплекс белков, который протыкает ее собственную мембрану изнутри.

При этом соседи получают возможность добить бактерию и позвать на помощь другие клетки иммунитета.

Подобные смерти среди клеток учащаются, когда человек болен, например, нейродегенеративным заболеванием, таким как болезнь Паркинсона или Альцгеймера. Ученые полагают, что, блокируя некроптоз, смогут их остановить. В то же время можно применить некроптоз в мирных целях и организовывать несчастные случаи, например, для раковых клеток, устойчивых к другим механизмам гибели.

Истории о преднамеренной гибели лучше всего начать с описания долгой и постепенной смерти клетки, которую даже язык не поворачивается назвать самоубийством. Это скорее смерть при исполнении обязанностей.

Известно, что некоторые роды деятельности требуют от человека чрезмерного вложения сил, в результате чего на повседневную жизнь их не остается.

У клеток тоже есть такая профессия — защищать организм от внешних агрессоров.

Этим, например, занимаются клетки эпидермиса, верхнего слоя кожи. Они образуются в глубине эпидермиса и постепенно движутся наверх, по мере того как их предшественники отшелушиваются.

Для того чтобы кожа получилась прочной, клеткам приходится укреплять себя изнутри, накапливая твердые белки и жестко держась друг за друга клеточными контактами. В такой конструкции нет места ни ядру, ни другим органеллам, поэтому они постепенно исчезают, пока клетка поднимается наружу.

В конечном счете от клетки остается мешочек из жира, заполненный белками. Так происходит процесс ороговения — самой медленной и неотвратимой клеточной гибели.

Истинное самоубийство

Однако самым хорошо изученным остается механизм настоящего самоубийства клетки — апоптоза. Оно происходит, когда клетка по тем или иным причинам «решает», что ее дальнейшее существование небезопасно для организма. Эти причины могут быть самыми разными.

Внешние причины

«Говорят, я не такой, как все». Если клетки иммунитета, например Т-лимфоциты, обнаруживают клетку с неправильными белками на поверхности, ей посылают сигнал смерти через рецепторы на мембране. Обычно после этого клетка послушно умирает. А если нет, то, возможно, перед нами бунтарь и правонарушитель — будущая опухоль.

«Освободим место другим». В развитии организма немало периодов, когда органы или ткани заменяются на другие или отмирают совсем. В таких случаях самоубийство абсолютно нормально, клетку на него могут уговорить соседи из других тканей. Если оно почему-то не произошло, то остаются рудименты: например, человек рождается со сросшимися пальцами.

«Меня никто не любит». Клетки в организме обмениваются сигналами поддержки, то есть сигнальными молекулами. Часто они выделяются нервными окончаниями. Если нервное окончание повреждено, то окружающие клетки не чувствуют поддержки и заключают, что они больше не находятся в организме. А вне организма жизни нет.

«Земля уходит из-под ног». Кроме общения с соседями, клетке важно закрепиться на межклеточном веществе (за исключением клеток крови). Иногда это помогает ей выполнять свои функции, например ползти, а иногда от этого вещества поступают сигналы выживания. Если клетка ни к чему не прикреплена, она считает себя неработоспособной и погибает.

Внутренние причины

«Распад личности». Центром клетки, как известно, является ядро с ДНК. Если в ДНК накапливаются ошибки, растет шанс опухолевой трансформации. Поэтому системы репарации, которые чинят ошибки в ДНК, параллельно стимулируют апоптоз. Когда таких сигналов становится много, чинить что-то уже бесполезно, проще умереть.

«Я неуравновешен». Иногда клетке не удается поделить свои хромосомы на две части, тогда наступает так называемая митотическая катастрофа. Опять же дисбаланс генетического материала приводит к образованию опухолей, поэтому такие неуравновешенные клетки должны погибнуть.

«Нечем дышать». Вторая ключевая органелла клетки после ядра — митохондрия. Там происходит клеточное дыхание с образованием энергии. Если митохондрия повреждена, то из ее внутреннего пространства в цитоплазму клетки выходят молекулы, запускающие апоптоз.

«Я слишком возбужден». Это случается с нервными клетками при избытке возбуждающих сигналов. На мембране клетки открывается много ионных каналов, в том числе для кальция, его концентрация в клетке сильно возрастает, от этого рушится мембрана митохондрий — и вот уже нечем дышать.

Чем бы ни запускался апоптоз, итог всегда один. Белки, стимулирующие гибель клетки, запускают ферменты каспазы, которые активируют друг друга и начинают расщеплять все клеточные молекулы подряд. В результате на клетке сначала образуются выпячивания, а потом она вся распадается на мембранные пузырьки — апоптотические тела, которые могут поглотить макрофаги.

(А) Здоровые клетки. (В) Клетки, которые распадаются на апоптотические тела. Изображение адаптировано. Edelweiss E, Balandin TG, Ivanova JL, Lutsenko GV, Leonova OG, Popenko VI, Sapozhnikov AM, Deyev SM.Edelweiss E, Balandin TG et al Barnase as a New Therapeutic Agent Triggering Apoptosis in Human Cancer Cells, PLoS One. 2008 Jun 18;3(6):e2434CC BY 2.5

Прелесть гибели клеток апоптозом заключается в том, что при этом они практически не вредят окружающим тканям.

Из таких клеток выделяется совсем немного веществ, вызывающих воспаление и загрязняющих межклеточное пространство, — остальное поглощают макрофаги. Однако, чтобы так аккуратно уйти, клетке необходима энергия.

Апоптоз — энергозависимая гибель, в отличие от некроза. Во многих из вышеперечисленных случаев клетка может погибнуть и некрозом, то есть просто лопнуть, если ей не хватает энергии.

Еще одно полезное свойство апоптоза — мы точно знаем, как он работает. И, к сожалению, знаем, что именно его нарушение является причиной большинства онкологических заболеваний. Поэтому сейчас многие исследования направлены на то, чтобы избирательно его заблокировать или активировать в тех или иных клетках.

Маленькая смерть во спасение

Не все нарушения в работе клетки обязательно приводят к смерти. Самый выигрышный для клетки вариант — распознать повреждения на ранних стадиях и постараться их заблаговременно починить. Для этого существует аутофагия — процесс постепенного самопоедания, переваривания собственного содержимого.

Умереть таким образом практически невозможно — среди клеток гибель такого типа удалось обнаружить в единичных случаях. Зато переваривание собственных испорченных белков или целых органелл позволяет избавиться от ошибок.

Это скорее перезагрузка для клетки, похожая на очищение от лишних мыслей, которое испытывает человек, прыгнувший с парашютом и фактически побывавший на грани смерти.

Типы клеточной гибели, видоизменённая схема Jhayes21Wikimedia commonsCC BY-SA 3.0

Поэтому для большинства клеток организма аутофагия исключительно полезна. Она позволяет стволовым клеткам дольше оставаться стволовыми, замедляет старение клеток и помогаетпротивостоять внешним повреждениям, например, при атеросклерозе. А в клетках мозга, например, особенно важна митофагия — переваривание митохондрий.

Если оно нарушено, могут развиваться нейродегенеративные заболевания, такие как болезнь Паркинсона. Также митофагия препятствует росту опухоли на ранних стадиях (правда, к сожалению, способствует на поздних). В некоторых случаях аутофагия помогает и переваривать внутриклеточных патогенов (например, вирусные частицы).

Но некоторые вирусы, например ВИЧ, научилисьподавлять аутофагию или размножаться прямо в пищеварительных вакуолях.

Изучение механизмов аутофагии находится сейчас на переднем крае клеточной биологии. Недаром в 2016 году за работу в этом направлении вручили Нобелевскую премию.

Среди ближайших перспектив — борьба с инфекциями и нейродегенеративными заболеваниями и продление жизни. В любом случае уже стало понятно, что не во всех ситуациях клетке стоит сразу прыгать с моста.

Возможно, иногда достаточно просто прыгнуть с парашютом и жизнь наладится.

 Полина Лосева

в журнале «Чердак», 08.11.2017

Источник: https://cmtscience.ru/article/jizn-nashih-kletok-chast-1

Клеточные трагедии, часть 1

Гибель клеток жизненно важна для продолжения жизни

Полина Лосева, «Чердак»

Жизнь клетки насыщена событиями не меньше, чем человеческая. Она полна страстей, опасностей и, как и всякая жизнь, рано или поздно заканчивается. Полина Лосева решила разобраться в том, какие сюжеты встречаются в судьбах клеток и как их развитие сказывается на нас с вами. А начать эту повесть мы решили с самого общего для всего живого – смерти.

В общем виде жизненный путь клетки, как и любого живого существа, довольно прост. Вариантов развития событий немного: покой, размножение или смерть. Активно делиться в нашем организме могут лишь немногие клетки, остальные либо к этому вообще не способны, либо ждут сигнала извне.

В последнем случае в клетках обычно присутствуют белки, стимулирующие деление, но в небольших количествах, которые резко могут возрасти, если придет сигнал. В то же время во всех клетках постоянно находятся белки, запускающие клеточную гибель. К счастью, тоже обычно в небольших количествах.

То есть залогом спокойной жизни клетки является баланс между белками, запускающими деление, и «белками смерти». Все как у людей: хорошее самочувствие возникает тогда, когда хороших мыслей хотя бы не меньше, чем плохих.

Но допустим, что-то пошло не так. Как определить, что клетка умирает или уже мертва? В отличие от человека, здесь достаточно посмотреть на ее внешний вид.

Если вы заметили, что клетка приобрела неправильную форму и потеряла наружную мембрану, то, кажется, у нее неприятности. А если клетка распалась на кусочки, которые уже поедают ее соседи, то можно смело констатировать ее смерть.

Но попробуем отмотать время назад и разобраться, что могло послужить причиной такого бесславного конца.

Несчастный случай

От него не застрахован, увы, никто. Даже маленькую клетку можно случайно раздавить или проткнуть. Кроме этого, ее можно внезапно лишить еды. И если у клетки нет запасов на черный день, то энергия заканчивается моментально.

Обычно значительную часть энергии клетка тратит на контроль за транспортом веществ через наружную мембрану.

И если энергии нет, то транспорт нарушается и вещества могут фактически бесконтрольно сквозь нее проходить и ее повреждать, а это то же самое, как если бы мембрану проткнули.

Дальше ситуация развивается по стандартному сценарию: в мембране образуется дырка, сквозь нее вода течет в клетку, клетка разбухает и готовится лопнуть.

Из дырки наружу выходят разные внутриклеточные вещества, их потихоньку поглощают соседние клетки. Но часть веществ соседи съесть не успевают, и они расплываются по ткани, нередко вызывая воспаление.

Такой тип гибели называется некрозом (не путать с некрозом ткани – почернением и распадом, который возникает, например при гангрене).

Интересно, что иногда клетка может пожертвовать собой на благо родины, это назвали некроптозом (по аналогии с апоптозом, о котором речь пойдет дальше). Например, бывает так, что клетка-макрофаг самоотверженно съела бактерию, но не смогла ее переварить.

Можно смириться с тем, что бактерия останется жить внутри, а можно проявить трагический героизм. Такая клетка-герой создает комплекс белков, который протыкает ее собственную мембрану изнутри.

При этом соседи получают возможность добить бактерию и позвать на помощь другие клетки иммунитета.

Подобные смерти среди клеток учащаются, когда человек болен, например, нейродегенеративным заболеванием, таким как болезнь Паркинсона или Альцгеймера. Ученые полагают, что, блокируя некроптоз, смогут их остановить. В то же время можно применить некроптоз в мирных целях и организовывать несчастные случаи, например, для раковых клеток, устойчивых к другим механизмам гибели.

Профессиональное выгорание

Истории о преднамеренной гибели лучше всего начать с описания долгой и постепенной смерти клетки, которую даже язык не поворачивается назвать самоубийством. Это скорее смерть при исполнении обязанностей.

Известно, что некоторые роды деятельности требуют от человека чрезмерного вложения сил, в результате чего на повседневную жизнь их не остается.

У клеток тоже есть такая профессия – защищать организм от внешних агрессоров.

Этим, например, занимаются клетки эпидермиса, верхнего слоя кожи. Они образуются в глубине эпидермиса и постепенно движутся наверх, по мере того как их предшественники отшелушиваются.

Для того чтобы кожа получилась прочной, клеткам приходится укреплять себя изнутри, накапливая твердые белки и жестко держась друг за друга клеточными контактами.

В такой конструкции нет места ни ядру, ни другим органеллам, поэтому они постепенно исчезают, пока клетка поднимается наружу. 

В конечном счете от клетки остается мешочек из жира, заполненный белками. Так происходит процесс ороговения – самой медленной и неотвратимой клеточной гибели.

Истинное самоубийство

Однако самым хорошо изученным остается механизм настоящего самоубийства клетки – апоптоза. Оно происходит, когда клетка по тем или иным причинам «решает», что ее дальнейшее существование небезопасно для организма. Эти причины могут быть самыми разными.

Внешние причины

«Говорят, я не такой, как все». Если клетки иммунитета, например Т-лимфоциты, обнаруживают клетку с неправильными белками на поверхности, ей посылают сигнал смерти через рецепторы на мембране. Обычно после этого клетка послушно умирает. А если нет, то, возможно, перед нами бунтарь и правонарушитель – будущая опухоль.

«Освободим место другим». В развитии организма немало периодов, когда органы или ткани заменяются на другие или отмирают совсем. В таких случаях самоубийство абсолютно нормально, клетку на него могут уговорить соседи из других тканей. Если оно почему-то не произошло, то остаются рудименты: например, человек рождается со сросшимися пальцами.

«Меня никто не любит». Клетки в организме обмениваются сигналами поддержки, то есть сигнальными молекулами. Часто они выделяются нервными окончаниями. Если нервное окончание повреждено, то окружающие клетки не чувствуют поддержки и заключают, что они больше не находятся в организме. А вне организма жизни нет.

«Земля уходит из-под ног». Кроме общения с соседями, клетке важно закрепиться на межклеточном веществе (за исключением клеток крови). Иногда это помогает ей выполнять свои функции, например ползти, а иногда от этого вещества поступают сигналы выживания. Если клетка ни к чему не прикреплена, она считает себя неработоспособной и погибает.

Внутренние причины

«Распад личности». Центром клетки, как известно, является ядро с ДНК. Если в ДНК накапливаются ошибки, растет шанс опухолевой трансформации. Поэтому системы репарации, которые чинят ошибки в ДНК, параллельно стимулируют апоптоз. Когда таких сигналов становится много, чинить что-то уже бесполезно, проще умереть.

«Я неуравновешен». Иногда клетке не удается поделить свои хромосомы на две части, тогда наступает так называемая митотическая катастрофа. Опять же дисбаланс генетического материала приводит к образованию опухолей, поэтому такие неуравновешенные клетки должны погибнуть.

«Нечем дышать». Вторая ключевая органелла клетки после ядра – митохондрия. Там происходит клеточное дыхание с образованием энергии. Если митохондрия повреждена, то из ее внутреннего пространства в цитоплазму клетки выходят молекулы, запускающие апоптоз.

«Я слишком возбужден». Это случается с нервными клетками при избытке возбуждающих сигналов. На мембране клетки открывается много ионных каналов, в том числе для кальция, его концентрация в клетке сильно возрастает, от этого рушится мембрана митохондрий – и вот уже нечем дышать.

Чем бы ни запускался апоптоз, итог всегда один. Белки, стимулирующие гибель клетки, запускают ферменты каспазы, которые активируют друг друга и начинают расщеплять все клеточные молекулы подряд. В результате на клетке сначала образуются выпячивания, а потом она вся распадается на мембранные пузырьки – апоптотические тела, которые могут поглотить макрофаги.

(А) Здоровые клетки. (В) Клетки, которые распадаются на апоптотические тела. Изображение адаптировано. Edelweiss et al., Barnase as a New Therapeutic Agent Triggering Apoptosis in Human Cancer Cells // PLoS One, 2008.

Прелесть гибели клеток апоптозом заключается в том, что при этом они практически не вредят окружающим тканям.

Из таких клеток выделяется совсем немного веществ, вызывающих воспаление и загрязняющих межклеточное пространство, – остальное поглощают макрофаги. Однако, чтобы так аккуратно уйти, клетке необходима энергия.

Апоптоз – энергозависимая гибель, в отличие от некроза. Во многих из вышеперечисленных случаев клетка может погибнуть и некрозом, то есть просто лопнуть, если ей не хватает энергии.

Еще одно полезное свойство апоптоза – мы точно знаем, как он работает. И, к сожалению, знаем, что именно его нарушение является причиной большинства онкологических заболеваний. Поэтому сейчас многие исследования направлены на то, чтобы избирательно его заблокировать или активировать в тех или иных клетках.

Маленькая смерть во спасение

Не все нарушения в работе клетки обязательно приводят к смерти. Самый выигрышный для клетки вариант – распознать повреждения на ранних стадиях и постараться их заблаговременно починить. Для этого существует аутофагия – процесс постепенного самопоедания, переваривания собственного содержимого.

Умереть таким образом практически невозможно – среди клеток гибель такого типа удалось обнаружить в единичных случаях. Зато переваривание собственных испорченных белков или целых органелл позволяет избавиться от ошибок.

Это скорее перезагрузка для клетки, похожая на очищение от лишних мыслей, которое испытывает человек, прыгнувший с парашютом и фактически побывавший на грани смерти.

Типы клеточной гибели (Jhayes21, Wikimedia).

Поэтому для большинства клеток организма аутофагия исключительно полезна. Она позволяет стволовым клеткам дольше оставаться стволовыми, замедляет старение клеток и помогаетпротивостоять внешним повреждениям, например, при атеросклерозе. А в клетках мозга, например, особенно важна митофагия – переваривание митохондрий.

Если оно нарушено, могут развиваться нейродегенеративные заболевания, такие как болезнь Паркинсона. Также митофагия препятствует росту опухоли на ранних стадиях (правда, к сожалению, способствует на поздних). В некоторых случаях аутофагия помогает и переваривать внутриклеточных патогенов (например, вирусные частицы).

Но некоторые вирусы, например ВИЧ, научилисьподавлять аутофагию или размножаться прямо в пищеварительных вакуолях.

Изучение механизмов аутофагии находится сейчас на переднем крае клеточной биологии. Недаром в 2016 году за работу в этом направлении вручили Нобелевскую премию.

Среди ближайших перспектив – борьба с инфекциями и нейродегенеративными заболеваниями и продление жизни. В любом случае уже стало понятно, что не во всех ситуациях клетке стоит сразу прыгать с моста.

Возможно, иногда достаточно просто прыгнуть с парашютом и жизнь наладится.

Портал «Вечная молодость» http://vechnayamolodost.ru

Источник: http://www.vechnayamolodost.ru/articles/drugie-nauki-o-zhizni/kletochnye-tragedii-chast-1/

Из жизни мертвецов: так ли необратима смерть?

Гибель клеток жизненно важна для продолжения жизни

Любое живое существо — невероятно сложная структура. Можно было бы ожидать, что после смерти эта структура будет постепенно разрушаться и все жизненные процессы будут затухать. Но оказывается, что клетки в мертвом теле продолжают активно работать, отчаянно пытаясь выжить. Эта статья расскажет о танатотранскриптоме и о том, перевозит ли Харон в обе стороны.

Сегодня общепринята точка зрения, что мертвое тело от живого отличается отсутствием мозговой активности. В то же время существует множество пограничных состояний, для которых нельзя провести четкой разделительной черты между жизнью и смертью.

Сейчас такие состояния называют клинической смертью, но раньше никто и представить не мог, что врачи научатся возвращать к жизни, казалось бы, уже потерянных людей. Еще век назад не было возможности поддерживать впавшего в кому пациента, а два века назад остановка сердца означала неминуемую гибель.

Сейчас же все знают, что остановившееся сердце может снова забиться, если провести его массаж до наступления необратимых изменений. Таким образом, смерть — это не просто остановка жизненных процессов, а их необратимое прекращение.

Как далеко находится «точка невозврата», зависит от уровня медицины в каждый исторический период.

До сих пор, несмотря на торжество молекулярной биологии, практически невозможно повернуть вспять внутриклеточные постмортальные изменения, наступающие быстрее всего в нервной ткани. Но есть способ замедлить эти изменения и отсрочить проявление их печальных физиологических последствий.

Чудеса реанимации

С 1970-х годов по всему миру законодательство отошло от устаревшего определения смерти, в котором главным признаком было отсутствие дыхания и пульса, и пришло к критерию отсутствия мозговой активности. К 1980-м уточнили, что активность должна отсутствовать во всём мозге, а не только коре [1].

С этих пор врачебное сообщество особо интересовал вопрос: как долго человек может находиться в состоянии клинической смерти без необратимого вреда для мозга? В 1980-х выяснили, что при остановке сердца необратимые изменения мозга наступают, если не восстановить кровоток в течение пяти минут [2].

Но в 1990-х опыты американского ученого Петера Сафара, проведенные на собаках, показали, что охлаждение мозга до 30 °С позволяет продлить это время до 10 минут [3].

После успешных опытов над людьми, которых после остановки сердца в течение суток охлаждали до 32-34 °С, охлаждение мозга было включено в рекомендации по оказанию первой помощи при остановке сердца [4].

Медицине известны уникальные случаи, когда люди выживали после длительной остановки кровообращения при экстремальном охлаждении.

Так, шведке Анне Багенхольм удалось выжить после несчастного случая на лыжной трассе в 1999 году: она провалилась под лед, где провела почти полтора часа, из которых последние 40 минут — с остановившимся сердцем . Ее температура упала ниже 14 °С, но она выжила и смогла полностью восстановиться (рис. 1) [5].

Рисунок 1. «Голова должна быть в холоде…»а — При остановке сердца рекомендуется поместить голову пациента в холодное место, чтобы избежать необратимого повреждения мозга при ишемии.

 б — Известны случаи, когда после длительной остановки сердца люди оставались живы благодаря переохлаждению. Например, Анна Багенхольм выжила после 40-минутной остановки сердца, попав под лед на лыжной трассе.

Ее температура при этом упала до 13,7 °С.

Отодвигая определение смерти

Но что делать, если мозговая активность уже пропала? Есть ли способ исправить, казалось бы, непоправимый урон? Способности мозга млекопитающих к регенерации крайне низки. Несмотря на наличие в мозге нервных стволовых клеток, их активность весьма ограничена [9]. В то же время у амфибий и рыб стволовые клетки позволяют восстановить мозг даже после потери целых отделов этого органа [10].

Но возможно, существуют способы пробудить скрытый регенеративный потенциал мозга человека. Для поиска этих способов две фирмы, специализирующиеся на регенеративной медицине, — Bioquark и Revita Life Sciences — объединились в проекте ReAnima.

В апреле 2016 ReAnima объявил о старте proof of concept клинического исследования, в котором будет опробован комплекс мер по возврату к жизни людей с зафиксированной смертью мозга. Детали исследования не разглашаются, но известно, что оно проводится на базе больницы Анупам в Рудрапуре (Индия) и в нём примут участие 20 пациентов.

Терапия будет включать инъекции пептидов, лазерную стимуляцию нервов и клеточные технологии. Результаты исследования обнародуют в 2017 году [11].

Мертво тело, но не клетки

С точки зрения отдельных клеток, смерть организма — это лишь нехватка питательных веществ и гипоксия, которые могут прекратиться в любой момент.

Поэтому даже если полученный организмом урон абсолютно необратим, клетки просто этого не знают и продолжают надеяться на лучшее, пока у них есть силы.

Спустя некоторое время часть клеток понимает, что имеющихся вокруг ресурсов на всех не хватит, и благородно жертвует собой ради спасения остальных, запуская программу саморазрушения — апоптоз.

И всё же некоторые клетки продолжают жить, ну или по крайней мере поддерживать часть процессов, идущих в живых клетках. О том, как себя ведут частично живые клетки, известно очень мало.

Понимание же этих процессов важно не только для осуществления далекой фантазии о возврате умерших к жизни, но и для решения более реальных проблем трансплантологии. Отделенные от донора органы тоже можно считать живыми или мертвыми — в зависимости от того, смогут ли они заработать в новом теле.

Чтобы продлить срок их хранения, необходимо понимать, что такое смерть на клеточном и молекулярном уровнях и как можно обратить процессы, в конечном счете приводящие к безвозвратной потере органа.

Танатотранскриптом — экспрессия на том свете

Международная группа ученых задалась вопросом: как меняется уровень РНК в клетках мертвого организма? Изначальная гипотеза предполагала, что при смерти организма машина синтеза РНК какое-то время продолжит работать, но ее активность будет постепенно затухать, пока синтез не прекратится вовсе (рис. 2) [12]. Такой сценарий можно сравнить с автомобилем, в котором кончился бензин: машина продолжит двигаться по инерции и будет замедляться, пока поршни не совершат несколько последних циклов и автомобиль в конце концов не остановится полностью.

Но оказывается, что некоторые гены активно транскрибируются спустя дни после смерти организма. Если продолжать аналогию, то у заглохшего автомобиля внезапно начали бы работать стеклоочистители, включились бы радио и поворотники.

Рисунок 2. Количество выделяемой постмортальной РНК в среднем постепенно падает. Количество тотальной мРНК (в условных единицах, a.u.), выделенной посмертно из двух аквариумных рыбок данио-рерио (а) и мозга и печени одной домашней мыши (б).

Можно подумать, что повышение содержания некоторых РНК со временем — лишь следствие их высокой стабильности, однако немонотонность и несколько пиков концентрации для отдельных видов мРНК вместе с высокой воспроизводимостью данных подразумевают, что ошибка такого рода исключена. К тому же это исследование подтверждает результаты более ранней и менее масштабной работы, выявившей рост РНК генов матриксных металлопротеаз и миозиновых белков в крови и перикардиальной жидкости человека через 12 часов после смерти [13].

В каждом из объектов — рыбке Danio rerio и мыши Mus musculus — было идентифицировано более 500 генов, чья экспрессия значительно повышается после смерти (рис. 3). Среди «находок» (где увеличение синтеза достигает 50-60%) — белок-кодирующие гены и некодирующая мРНК.

Соответствующие белки участвуют в воспалении, иммунных реакциях, раковом перерождении, апоптозе, трансмембранном транспорте, реакциях на кислородное голодание и, как ни странно, эмбриональном развитии.

Большинство генов, ответственных за все эти процессы, у мыши активировались уже через час после смерти, а у D. rerio медленнее — в течение суток. Экспрессия некоторых генов у мыши продолжала расти два дня, а у D. rerio — даже три дня после гибели организма.

Это значит, что в течение такого времени клетка сохраняет остатки структур, обеспечивающих синтез РНК.

Рост транскрипции некоторых генов, как например генов воспаления и иммунитета, имеет биологический смысл: клетки чувствуют угрозу своему существованию и пытаются противостоять ей.

Точно так же активация генов мембранного транспорта — отчаянная попытка гибнущих клеток восстановить гомеостаз.

В то же время экспрессия генов эмбрионального развития в мертвом организме, скорее всего, свидетельствует о разрушении сложных регуляторных путей, для поддержания которых требуется постоянный приток энергии и определенные внутриклеточные условия [12].

Рисунок 3. Процент белок-кодирующих генов с растущей долей мРНК в каждой категории в зависимости от времени после смерти.

Критика танатотранскриптома

Важно отметить, что обсуждаемая работа содержит ряд спорных моментов.

Так, в ней определялись лишь относительные концентрации мРНК, которые росли даже после резкого падения уровня тотальной РНК (рис. 2), то есть деградация РНК идет гораздо интенсивней, чем синтез.

К тому же работа велась с препаратами смеси тканей, клетки которых различаются по энергетическим потребностям, а стало быть, и выживаемости [14].

Из-за этого может оказаться, что в какой-то момент картина относительных концентраций мРНК поменялась, потому что тогда умер определенный тип клеток, что повысило относительное содержание стабильных мРНК этого типа клеток.

Некоторые морфологические постмортальные изменения также могут влиять на наблюдаемую картину: с оттоком крови из печени уровень мРНК клеток крови будет падать, а мРНК гепатоцитов — расти. Для большей точности было бы необходимо провести работу с отдельными тканями и клетками, изъятыми из трупов животных.

Больше ответов — больше вопросов

Приведенное исследование почти уникально в своем роде.

В более ранних трудах даже не рассматривалась возможность активной транскрипции после смерти — считалось, что в мертвом организме РНК не синтезируется [15], [16].

И хотя объем проделанной работы (содержащей некоторые спорные моменты) действительно велик, молекулярная танатология пока большей частью состоит из вопросов, а не ответов.

Самый важный из этих вопросов — как найденные закономерности в тотальных препаратах тканей соотносятся с данными по отдельным типам клеток?

Но, несмотря на свои недостатки, это исследование поднимает целый ряд практически значимых вопросов.

Например, насколько критичны индивидуальные различия в танатотранскриптомах для успешной трансплантации? Может ли постмортальный репертуар мРНК быть так же важен, как совместимость иммунных рецепторов донора и реципиента? Существуют ли молекулярные детерминанты успешной реанимации? Как коктейль онкогенных, эмбриональных и апоптотических генов повлияет на судьбу клеток, вернувшихся в нормальные физиологические условия?

Стоит отметить, что для прикладной науки наиболее интересно узнать все ответы применительно к человеку, а это может быть очень сложным из-за этических ограничений. Без данных же о человеческом танатотранскриптоме любые исследования в этом направлении просто обречены остаться без практического применения.

  1. What is the Uniform Declaration of Death Act (UDDA)? FindLaw;
  2. Safar P. (1986). Cerebral resuscitation after cardiac arrest: a review. Circulation. 74, IV138— IV153;
  3. Eric W. Brader, Dietrich Jehle, Michael Mineo, Peter Safar. (2010). Protective head-cooling during cardiac arrest and cardiopulmonary resuscitation: the original animal studies. Neurol Int. 2, 3;
  4. The Hypothermia after Cardiac Arrest Study Group. (2002). Mild Therapeutic Hypothermia to Improve the Neurologic Outcome after Cardiac Arrest. N Engl J Med. 346, 549-556;
  5. Frozen woman: a ’walking miracle’. (2000). CBS news;
  6. Витрификация — контролируемая пауза развития в стеклоподобном состоянии;
  7. Анабиоз I. Минимальная жизнь;
  8. Анабиоз II. Смерть до востребования;
  9. Dengke K Ma, Michael A Bonaguidi, Guo-li Ming, Hongjun Song. (2009). Adult neural stem cells in the mammalian central nervous system. Cell Res. 19, 672-682;
  10. Tetsuya Endo, Jun Yoshino, Koji Kado, Shin Tochinai. (2007). Brain regeneration in anuran amphibians. Development, Growth & Differentiation. 49, 121-129;
  11. Non-randomized, open-labeled, interventional, single group, proof of concept study with multi-modality approach in cases of brain death due to traumatic brain injury having diffuse axonal injury. (2016). ClinicalTrials.gov;
  12. Pozhitkov A.E., Neme R., Domazet-Loso T., Leroux B., Soni S., Tautz D., Noble P.A. (2016). Thanatotranscriptome: genes actively expressed after organismal death. bioRxiv;
  13. Lucas González-Herrera, Aurora Valenzuela, Juan A. Marchal, José A. Lorente, Enrique Villanueva. (2013). Studies on RNA integrity and gene expression in human myocardial tissue, pericardial fluid and blood, and its postmortem stability. Forensic Science International. 232, 218-228;
  14. C J Babapulle, N P K Jayasundera. (1993). Cellular Changes and Time since Death. Med Sci Law. 33, 213-222;
  15. Vibeke Sørensen Catts, Stanley Victor Catts, Harvey Robert Fernandez, Jennifer Maree Taylor, Elizabeth Jane Coulson, Louise Helen Lutze-Mann. (2005). A microarray study of post-mortem mRNA degradation in mouse brain tissue. Molecular Brain Research. 138, 164-177;
  16. Marielle Heinrich, Katja Matt, Sabine Lutz-Bonengel, Ulrike Schmidt. (2007). Successful RNA extraction from various human postmortem tissues. Int J Legal Med. 121, 136-142.

Источник: https://biomolecula.ru/articles/iz-zhizni-mertvetsov-tak-li-neobratima-smert

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.